Bounds for Anisotropic Carleson Operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carleson Measures Associated with Families of Multilinear Operators

Abstract. In this work we investigate the construction of Carleson measures from families of multilinear integral operators applied to tuples of L∞ and BMO functions. We show that if the family Rt of multilinear operators possesses cancellation in each variable, then for BMO functions b1, . . . , bm, the measure |Rt(b1, . . . , bm)(x)|dxdt/t is Carleson. However, if the family of multilinear op...

متن کامل

On Generalized Carleson Operators of Periodic Wavelet Packet Expansions

Three new theorems based on the generalized Carleson operators for the periodic Walsh-type wavelet packets have been established. An application of these theorems as convergence a.e. for the periodic Walsh-type wavelet packet expansion of block function with the help of summation by arithmetic means has been studied.

متن کامل

Error bounds for anisotropic RBF interpolation

We present error bounds for the interpolation with anisotropically transformed radial basis functions for both function and its partial derivatives. The bounds rely on a growth function and do not contain unknown constants. For polyharmonic basic functions in R we show that the anisotropic estimates predict a significant improvement of the approximation error if both the target function and the...

متن کامل

Anisotropic Laplace-Beltrami Operators for Shape Analysis

This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh p...

متن کامل

Pohozaev Identities for Anisotropic Integro-differential Operators

We establish Pohozaev identities and integration by parts type formulas for anisotropic integro-differential operators of order 2s, with s ∈ (0, 1). These identities involve local boundary terms, in which the quantity u/d|∂Ω plays the role that ∂u/∂ν plays in the second order case. Here, u is any solution to Lu = f(x, u) in Ω, with u = 0 in R \ Ω, and d is the distance to ∂Ω.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2018

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-018-09657-7